

Good Morning:

Please take out your notebook, a pencil, and your calculator.

Please write the balanced equation for the silver nitrate and copper lab in your notebook.

Grab a handout from the front desk.

STOICHIOMETRY

 the study of the quantitative aspects of chemical reactions.

Chapter 12: Stoichiometry

What we know

• Ch. 10: Chemical Quantities

The Mole and Dimensional Analysis

Reference = 875

- Percent Composition and Empirical Formulas
- Ch. II: Chemical Reactions
 - Types of Chemical Reactions

• Balancing Chemical Reactions

Stoichiometry

- Apply previous knowledge of molar quantities and balancing reactions.
- Chemicals can be measured in many ways. We will now use balanced equations to make sense of different types of chemical quantities using dimensional analysis.

If I have 1 mole of AgNO₃, how many moles of silver are produced?

Kolmal Ag NO3

Vo # mol Ag

1 mol AgNO3 X 2 mol AgNO3 - I mol Ag

If I have 1 mole of Cu, how many moles of Cu(NO₃)₂ would be produced?

 $K_{o}^{6} \mid u\omega \mid CC$ $V_{e}^{mo} \mid CC \mid M \mid 3 \mid 2$ $| no \mid CC \mid M \mid 3 \mid 2$ $| no \mid CC \mid M \mid 3 \mid 2$ $| no \mid CC \mid M \mid 3 \mid 2$

Ingredients Edit and Save

Original recipe makes 2 dozen Change Servings

- 1 cup butter flavored shortening
- 3/4 cup white sugar
- 3/4 cup brown sugar
- 2 eggs

- 2 1/4 cups all-purpose flour
- 1 teaspoon baking soda
- 1 teaspoon salt
- 2 cups milk chocolate chips

Converting Cookies

Recipe: 24 Cookies

- I C shortening
- 2.25 C Flour
- 3/4 C White Sugar
- I tsp Baking Soda
- 3/4 C Brown Sugar
- I tsp salt

• 2 Eggs

2 C Chocolate Chips

How much flour would I want to use to make 36 cookies?

How many cookies can I make with 2 cups of brown sugar?

Four Steps to Stoichiometry

- Step I:Write a balanced chemical equation. Write ref egns for にきし
- Step 2: Convert the given to moles.
- Step 3: Establish a ratio of reactants and products.
 Step 4: Convert the moles of the
- Step 4: Convert the moles of the unknown into the unit that the question asks for.

Mass to Moles to Mass

- 2) What mass of sodium chloride is produced when chlorine reacts with 0.29 g of sodium iodide?
- Step I:Write a balanced chemical equation.
- Cl₂+2Nal--->2NaCl+l₂

•Cl₂+2Nal--->2NaCl+l₂

- Step 2: Convert the **given** to moles.
- 0.29 g of NaI = 0.009 moles

\bullet Cl₂+2Nal--->2NaCl+l₂

- Step 3: Establish a ratio of reactants and products.
- For every 2Nal of reactants there are 2NaCl. Therefor, it is a 2 to 2 or 1 to 1 ratio.
- For every one mole of Nal of reactants, there will be one mole of NaCl produced.

\bullet Cl₂+2Nal--->2NaCl+l₂

- Step 4: Convert the moles of the unknown into the unit that the question asks for.
- In this case: grams of NaCl produced.
- 0.00193 moles of NaCl weighs Oil g.

Grams to Moles to Liters

- II) How many liters of oxygen are necessary for the combustion of 425 g of sulfur, assuming the reaction occurs at STP?
- Step 1: Balanced Equation
- S+O₂--->SO₂

•
$$S+O_2--->SO_2$$

- Step 2: convert the **given** to moles.
- 425 g S = ____ moles S

\bullet S+O₂--->SO₂

- Step 3: Establish a ratio of knowns and unknowns.
- For every mole of S, you need one mole of O₂.

 \bullet S+O₂--->SO₂

- Step 4: Convert the moles of the unknown into the unit that the question asks for.
- 13.3 moles of O₂ has a volume of L.

297L of oxygen gas

STOICHIOMETRIC PATHWAYS

Stoichiometry Map

Do Now:

Please take out your homeowork.

Check your answers on the side of the room.

Grab a whiteboard and write down the number of the problem that you would like me to go over.

Molar Ratio Differences

- 12) Find the mass of benzene required to produce 2.66 L of carbon dioxide gas at STP.
- Equation given. Balance it

2C₆H₆+15O₂--->6H₂O+12CO₂

- Step 2: convert the **given** to moles.
- 2.66 L of CO₂ = ____ moles.

$2C_6H_6+15O_2--->6H_2O+12CO_2$

- Step 3: Establish a ratio of knowns and unknowns.
- For every 12 moles of CO₂, there are 2 moles of C₆H₆.
- Therefor, for every 6 moles of CO₂, there is one mole of C₆H₆.
- How many moles of C₆H₆_____?

2C₆H₆+15O₂--->6H₂O+12CO₂

- Step 4: Convert the moles of the unknown into the unit that the question asks for.
- For the mass of 0.0198 moles C₆H₆
 = ____g.

Ask Questions:

You and your partner will make up your own stoichiometry problem. Put it on a whiteboard and solve it in your notes.

Trade boards with another group. Check to see if they come up with the same ansewer.

12.3: Limiting Reagent and % Yield

- It is rare in real life that a chemical reaction uses all of the reactants completely.
- It is important to be able to determine how much of each of the reactants is used.

Limiting Reactant

- In a reaction, if one of the chemicals is used up, the reaction cannot continue.
- The chemical that limits the reaction from continuing is the limiting reactant.

See other presentation

Excess Reactant

- Likewise, there is often a chemical in a reaction that does not get completely used up.
- The chemical that there is an excess of after the reaction is complete is the excess reactant.

Example

- 18 g of Al reacts with 70 g of HCl in a single replacement reaction.
 - a) Determine the limiting and excess reactants.
 - b) Determine the mass of AICI formed in the reaction.
 - c) Determine the mass of excess reactant when the reaction stops.

Balance the Equation

Convert to Moles

- Moles of Al in 18 g:_____
- Moles of HCl in 70 g:_____

Mole Ratio

- 2AI+6HCI--->2AICI₃+3H₂
- For every 2 moles of Al, I need 6 moles of HCl. Therefor, the ratio of Al to HCl is _____.

Limiting and Excess Reactants

•	Based on our calculations, the limiting reactant is because
•	Based on our calculations, the excess
	reactant is because

Mass of AICI formed

- 2AI+6HCI--->2AICI3+3H2
- Determine the mass of AlCl₃ formed.

Mass of excess reactant

Mass of the excess reactant _____g.

